Tin

indiumtinantimony
Ge

Sn

Pb
Appearance
silvery (left, beta) or gray (right, alpha)
General properties
Name, symbol, number tin, Sn, 50
Pronunciation /ˈtɪn/
Element category post-transition metal
Group, period, block 145, p
Standard atomic weight 118.710
Electron configuration [Kr] 4d10 5s2 5p2
Electrons per shell 2, 8, 18, 18, 4 (Image)
Physical properties
Phase solid
Density (near r.t.) (white) 7.365 g·cm−3
Density (near r.t.) (gray) 5.769 g·cm−3
Liquid density at m.p. 6.99 g·cm−3
Melting point 505.08 K, 231.93 °C, 449.47 °F
Boiling point 2875 K, 2602 °C, 4716 °F
Heat of fusion (white) 7.03 kJ·mol−1
Heat of vaporization (white) 296.1 kJ·mol−1
Molar heat capacity (white) 27.112 J·mol−1·K−1
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1497 1657 1855 2107 2438 2893
Atomic properties
Oxidation states 4, 2, -4 (amphoteric oxide)
Electronegativity 1.96 (Pauling scale)
Ionization energies 1st: 708.6 kJ·mol−1
2nd: 1411.8 kJ·mol−1
3rd: 2943.0 kJ·mol−1
Atomic radius 140 pm
Covalent radius 139±4 pm
Van der Waals radius 217 pm
Miscellanea
Crystal structure note Tetragonal (white), diamond cubic (gray)
Magnetic ordering (gray)diamagnetic[1], (white) paramagnetic
Electrical resistivity (0 °C) 115 nΩ·m
Thermal conductivity 66.8 W·m−1·K−1
Thermal expansion (25 °C) 22.0 µm·m−1·K−1
Young's modulus 50 GPa
Shear modulus 18 GPa
Bulk modulus 58 GPa
Poisson ratio 0.36
Mohs hardness 1.5
Brinell hardness 51 MPa
CAS registry number 7440-31-5
Most stable isotopes
Main article: Isotopes of tin
iso NA half-life DM DE (MeV) DP
112Sn 0.97% 112Sn is stable with 62 neutrons
114Sn 0.66% 114Sn is stable with 64 neutrons
115Sn 0.34% 115Sn is stable with 65 neutrons
116Sn 14.54% 116Sn is stable with 66 neutrons
117Sn 7.68% 117Sn is stable with 67 neutrons
118Sn 24.22% 118Sn is stable with 68 neutrons
119Sn 8.59% 119Sn is stable with 69 neutrons
120Sn 32.58% 120Sn is stable with 70 neutrons
122Sn 4.63% 122Sn is stable with 72 neutrons
124Sn 5.79% 124Sn is stable with 74 neutrons
126Sn trace 2.3×105 y β 0.380 126Sb
· r

Tin ( /ˈtɪn/ tin) is a chemical element with the symbol Sn (for Latin: stannum) and atomic number 50. It is a main group metal in group 14 of the periodic table. Tin shows chemical similarity to both neighboring group 14 elements, germanium and lead and has two possible oxidation states, +2 and the slightly more stable +4. Tin is the 49th most abundant element and has, with 10 stable isotopes, the largest number of stable isotopes in the periodic table. Tin is obtained chiefly from the mineral cassiterite, where it occurs as tin dioxide, SnO2.

This silvery, malleable poor metal is not easily oxidized in air and is used to coat other metals to prevent corrosion. The first alloy, used in large scale since 3000 BC, was bronze, an alloy of tin and copper. After 600 BC pure metallic tin was produced. Pewter, which is an alloy of 85–90% tin with the remainder commonly consisting of copper, antimony and lead, was used for flatware from the Bronze Age until the 20th century. In modern times tin is used in many alloys, most notably tin/lead soft solders, typically containing 60% or more of tin. Another large application for tin is corrosion-resistant tin plating of steel. Because of its low toxicity, tin-plated metal is also used for food packaging, giving the name to tin cans, which are made mostly of steel.

Contents

Characteristics

Physical properties

Tin is a malleable, ductile and highly crystalline silvery-white metal. When a bar of tin is bent, a crackling sound known as the tin cry can be heard due to the twinning of the crystals.[2] Tin melts at a low temperature of about 232 °C, which is further reduced to 177.3 °C for 11-nm particles.[3]

β-tin (the metallic form, or white tin), which is stable at and above room temperature, is malleable. In contrast, α-tin (nonmetallic form, or gray tin), which is stable below 13.2 °C, is brittle. α-tin has a diamond cubic crystal structure, similar to diamond, silicon or germanium. α-tin has no metallic properties at all because its atoms form a covalent structure where electrons cannot move freely. It is a dull-gray powdery material with no common uses, other than a few specialized semiconductor applications.[2] These two allotropes, α-tin and β-tin, are more commonly known as gray tin and white tin, respectively. Two more allotropes, γ and σ, exist at temperatures above 161 °C and pressures above several GPa.[4] Although the α-β transformation temperature is nominally 13.2 °C, impurities (e.g. Al, Zn, etc.) lower the transition temperature well below 0 °C, and upon addition of Sb or Bi the transformation may not occur at all, increasing the durability of the tin.[5][6]

Commercial grades of tin (99.8%) resist transformation because of the inhibiting effect of the small amounts of bismuth, antimony, lead and silver present as impurities. Alloying elements such as copper, antimony, bismuth, cadmium and silver increase its hardness. Tin tends rather easily to form hard, brittle intermetallic phases, which are often undesirable. It does not form wide solid solution ranges in other metals in general, and there are few elements that have appreciable solid solubility in tin. Simple eutectic systems, however, occur with bismuth, gallium, lead, thallium and zinc.[5]

Tin becomes a superconductor below 3.72 K.[7] In fact, tin was one of the first superconductors to be studied; the Meissner effect, one of the characteristic features of superconductors, was first discovered in superconducting tin crystals.[8]

Chemical properties

Tin resists corrosion from water but can be attacked by acids and alkalis. Tin can be highly polished and is used as a protective coat for other metals.[2] In this case the formation of a protective oxide layer is used to prevent further oxidation. This oxide layer forms on pewter and other tin alloys.[9] Tin acts as a catalyst when oxygen is in solution and helps accelerate chemical attack.[2]

Isotopes

Tin is the element with the greatest number of stable isotopes, ten; these include all those with atomic masses between 112 and 124, with the exception of 113, 121 and 123. Of these, the most abundant ones are 120Sn (at almost a third of all tin), 118Sn, and 116Sn, while the least abundant one is 115Sn. The isotopes possessing even mass numbers have no nuclear spin while the odd ones have a spin of +1/2. Tin, with its three common isotopes 115Sn, 117Sn and 119Sn, is among the easiest elements to detect and analyze by NMR spectroscopy, and its chemical shifts are referenced against SnMe4.[note 1][10]

This large number of stable isotopes is thought to be a direct result of tin possessing an atomic number of 50, which is a "magic number" in nuclear physics. There are 28 additional unstable isotopes that are known, encompassing all the remaining ones with atomic masses between 99 and 137. Aside from 126Sn, which has a half-life of 230,000 years, all the radioactive isotopes have a half-life of less than a year. The radioactive 100Sn is one of the few nuclides possessing a "doubly magic" nucleus and was discovered relatively recently, in 1994.[11] Another 30 metastable isomers have been characterized for isotopes between 111 and 131, the most stable of which being 121mSn, with a half-life of 43.9 years.

Etymology

The English word 'tin' is Germanic; related words are found in the other Germanic languages—German zinn, Swedish tenn, Dutch tin, etc.—but not in other branches of Indo-European except by borrowing (e.g. Irish tinne). Its origin is unknown.[12]

The Latin name stannum originally meant an alloy of silver and lead, and came to mean 'tin' in the 4th century BCE[13]—the earlier Latin word for it was plumbum candidum 'white lead'. Stannum apparently came from an earlier stāgnum (meaning the same thing),[12] the origin of the Romance and Celtic terms for 'tin'.[12][14] The origin of stannum/stāgnum is unknown; it may be pre-Indo-European.[15] The Meyers Konversationslexikon speculates on the contrary that stannum is derived from Cornish stean, and is proof that Cornwall in the first centuries AD was the main source of tin.

History

Antiquity

Tin extraction and use can be dated to the beginnings of the Bronze Age around 3000 BC, when it was observed that copper objects formed of polymetallic ores with different metal contents had different physical properties.[16] The earliest bronze objects had tin or arsenic content of less than 2% and are therefore believed to be the result of unintentional alloying due to trace metal content in the copper ore[17] It was soon discovered that the addition of tin or arsenic to copper increased its hardness and made casting much easier, which revolutionized metal working techniques and brought humanity from the Copper Age or Chalcolithic to the Bronze Age around 3000 BC.[17] Early tin exploitation appears to have been centered on placer deposits of cassiterite.[18]

The first evidence of tin use for making bronze appears in the Near East and the Balkans around 3000 BC.[17] It is still unclear where the earliest tin was mined, as tin deposits are very rare and evidence of early mining is scarce. Europe's earliest mining district appears to be located in Erzgebirge, on the border between Germany and Czech Republic and is dated to 2500 BC. From there tin was traded north to the Baltic Sea and south to the Mediterranean following the Amber Road trading route. Tin mining knowledge spread to other European tin mining districts from Erzgebirge and evidence of tin mining begins to appear in Brittany, Devon and Cornwall, and in the Iberian Peninsula around 2000 BC.[17] These deposits saw greater exploitation when they fell under Roman control between the third century BC and the first century AD.[19] Demand for tin created a large and thriving network amongst Mediterranean cultures of Classical times.[20][21] By the Medieval period, Iberia's and Germany's deposits lost importance and were largely forgotten while Devon and Cornwall began dominating the European tin market.[19]

In the Far East, the tin belt stretching from Yunnan province in China to the Malaysian Peninsula began being exploited sometime between the third and second millennium BC. The deposits in Yunnan province were not mined until around 700 BC, but by the Han Dynasty had become the main source of tin in China according to historical texts of the Han, Jin, Tang, and Song dynasties.[22]

Other regions of the world developed tin mining industries at a much later date. In Africa, the Bantu culture extracted, smelted and exported tin between the 11th and 15th centuries AD,[17] in the Americas tin exploitation began around 1000 AD, and in Australia it began with the arrival of Europeans in the 17th century.

Modern times

During the Middle Ages, and again in the early 19th century, Cornwall was the major tin producer. This changed after large amounts of tin were found in the Bolivian tin belt and the east Asian tin belt, stretching from China through Thailand and Laos to Malaya and Indonesia. Tasmania also hosts deposits of historical importance, most notably Mount Bischoff and Renison Bell.

In 1931 the tin producers founded the International Tin Committee, followed in 1956 by the International Tin Council, an institution to control the tin market. After the collapse of the market in October 1985 the price for tin nearly halved.[23]

Tin foil was once a common wrapping material for foods and drugs; replaced in the early 20th century by the use of aluminium foil, which is now commonly referred to as tin foil. Hence one use of the slang term "tinnie" or "tinny" for a small pipe for use of a drug such as cannabis or for a can of beer. Today, the word "tin" is often improperly used as a generic term for any silvery metal that comes in sheets. Most everyday materials that are commonly called "tin", such as aluminium foil, beverage cans, corrugated building sheathing and tin cans, are actually made of steel or aluminium, although tin cans (tinned cans) do contain a thin coating of tin to inhibit rust. Likewise, so-called "tin toys" are usually made of steel, and may have a coating of tin to inhibit rust. The original Ford Model T was known colloquially as the "Tin Lizzy".

Compounds and chemistry

In the great majority of its compounds, tin has the oxidation state II or IV.

Inorganic compounds

Halide compounds are known for both oxidation states. For Sn(IV), all four halides are well known: SnF4, SnCl4, SnBr4, and SnI4. The three heavier members are volatile molecular compounds, whereas the tetrafluoride is polymeric. All four halides are known for Sn(II) also: SnF2, SnCl2, SnBr2, and SnI2. All are polymeric solids. Of these eight compounds, only the iodides are coloured.[24]

Tin(II) chloride (also known as stannous chloride) is the most important tin halide in a commercial sense. Illustrating the routes to such compounds, chlorine reacts with tin metal to give SnCl4 whereas the reaction of hydrochloric acid and tin gives SnCl2 and hydrogen gas. Alternatively SnCl4 and Sn combine to stannous chloride via a process called comproportionation:[25]

SnCl4 + Sn → 2 SnCl2

Tin can form many oxides, sulfides, and other chalcogenide derivatives. The dioxide SnO2 (cassiterite) forms when tin is heated in the presence of air.[24] SnO2 is amphoteric, which means that it dissolves in both acidic and basic solutions.[26] There are also stannates with the structure [Sn(OH)6]2−, like K2[Sn(OH)6], although the free stannic acid H2[Sn(OH)6] is unknown. The sulfides of tin exist in both the +2 and +4 oxidation states: tin(II) sulfide and tin(IV) sulfide (Mosaic gold).

Hydrides

Stannane (SnH4), where tin is in the +4 oxidation state, is unstable. Organotin hydrides are however well known, e.g. tributyltin hydride (Sn(C4H9)3H).[2] These compound release transient tributyl tin radicals, rare examples of compounds of tin(III).[28]

Organotin compounds

Organotin compounds, sometimes called stannanes, are chemical compounds with tin-carbon bonds.[29] Of the compounds of tin, the organic derivatives are the most useful commercially.[30] Some organotin compounds are highly toxic and have been used as biocides. The first organotin compound to be reported was diethyltin diiodide ((C2H5)2SnI2), reported by Edward Frankland in 1849.[31]

Most organotin compounds are colorless liquids or solids that are stable to air and water. They adopt tetrahedral geometry. Tetraalkyl- and tetraaryltin compounds can be prepared using Grignard reagents:[30]

SnCl4 + 4 RMgBr → R4Sn + 4 MgBrCl

The mixed halide-alkyls, which are more common and more important commercially than the tetraorgano derivatives, are prepared by redistribution reactions:

SnCl4 + R4Sn → 2 SnCl2R2

Divalent organotin compounds are uncommon, although more common than related divalent organogermanium and organosilicon compounds. The greater stabilization enjoyed by Sn(II) is attributed to the "inert pair effect". Organotin(II) compounds include both stannylenes (formula: R2Sn, as seen for singlet carbenes) and distannylenes (R4Sn2), which are roughly equivalent to alkenes. Both classes exhibit unusual reactions.[32]

Occurrence

Tin is generated via the long S-process in low-medium mass stars (with masses of 0.6 to 10 of that of Sun). It arises via beta decay of heavy isotopes of indium.[33]

Tin is the 49th most abundant element in the Earth's crust, representing 2 ppm compared with 75 ppm for zinc, 50 ppm for copper, and 14 ppm for lead.[34]

Tin does not occur as the native element but must be extracted from various ores. Cassiterite (SnO2) is the only commercially important source of tin, although small quantities of tin are recovered from complex sulfides such as stannite, cylindrite, franckeite, canfieldite, and teallite. Minerals with tin are almost always associated with granite rock, usually at a level of 1% tin oxide content.[35]

Because of the higher specific gravity of tin dioxide, about 80% of mined tin is from secondary deposits found downstream from the primary lodes. Tin is often recovered from granules washed downstream in the past and deposited in valleys or under sea. The most economical ways of mining tin are through dredging, hydraulic methods or open cast mining. Most of the world's tin is produced from placer deposits, which may contain as little as 0.015% tin.[36]

It was estimated in January 2008 that there were 6.1 million tons of economically recoverable primary reserves, from a known base reserve of 11 million tons.[37] Below are listed the nations with the largest known reserves.

World tin mine reserves and reserve base in tons[37]
Country Reserves Reserve base
 China 1,700,000 3,500,000
 Malaysia 1,000,000 1,200,000
 Peru 710,000 1,000,000
 Indonesia 800,000 900,000
 Brazil 540,000 2,500,000
 Bolivia 450,000 900,000
 Russia 300,000 350,000
 Thailand 170,000 250,000
 Australia 150,000 300,000
  Other 180,000 200,000

Estimates of tin production have historically varied with the dynamics of economic feasibility and the development of mining technologies, but it is estimated that, at current consumption rates and technologies, the Earth will run out of tin that can be mined in 40 years.[38] However Lester Brown has suggested tin could run out within 20 years based on an extremely conservative extrapolation of 2% growth per year.[39]

Economically recoverable tin reserves[35]
Year Million tons
1965 4,265
1970 3,930
1975 9,060
1980 9,100
1985 3,060
1990 7,100
2008 6,100[40]

Secondary, or scrap, tin is also an important source of the metal. The recovery of tin through secondary production, or recycling of scrap tin, is increasing rapidly. Whereas the United States has neither mined since 1993 nor smelted tin since 1989, it was the largest secondary producer, recycling nearly 14,000 tons in 2006.[37]

New deposits are reported to be in southern Mongolia,[41] and in 2009, new deposits of tin were discovered in Colombia, South America, by the Seminole Group Colombia CI, SAS.[42][43]

Production

Tin is produced by reducing the ore with carbon in a reverberatory furnace.[44][45][46]

Mining and smelting

In 2006, total worldwide tin mine production was 321,000 tons, and smelter production was 340,000 tons. From its production level of 186,300 tons in 1991, around where it had hovered for the previous decades, production of tin increased 89% to 351,800 tons in 2005. Most of the increase came from China and Indonesia, with the largest spike in 2004–2005, when it increased 23%. While in the 1970s Malaysia was the largest producer, with around a third of world production, it has steadily fallen, and now remains a major smelter and market center. In 2007, the People's Republic of China was the largest producer of tin, where the tin deposits are concentrated in the southeast Yunnan tin belt,[47] with 43% of the world's share, followed by Indonesia, with an almost equal share, and Peru at a distant third, reports the USGS.[40]

The table below shows the countries with the largest mine production and the largest smelter output.[note 2]

Mine and smelter production (tons), 2006[48]
Country Mine production Smelter production
Indonesia 117,500 80,933
China 114,300 129,400
Peru 38,470 40,495
Bolivia 17,669 13,500
Thailand 225 27,540
Malaysia 2,398 23,000
Belgium 0 8,000
Russia 5,000 5,500
Congo-Kinshasa ('08) 15,000 0

After the discovery of tin in what is now Bisie, North Kivu in the Democratic Republic of the Congo in 2002, illegal production has increased there to around 15,000 tons.[49] This is largely fueling the ongoing and recent conflicts there, as well as affecting international markets.

Industry

The ten largest companies produced most of world's tin in 2007. It is not clear which of these companies include tin smelted from the mine at Bisie, Democratic Republic of the Congo, which is controlled by a renegade militia and produces 15,000 tons. Most of the world's tin is traded on the London Metal Exchange (LME), from 8 countries, under 17 brands.[50]

Largest tin mining companies by production in tons[51]
Company Polity 2006 2007 %Change
Yunnan Tin China 52,339 61,129 16.7
PT Timah Indonesia 44,689 58,325 30.5
Minsur Peru 40,977 35,940 −12.3
Malay China 52,339 61,129 16.7
Malaysia Smelting Corp Malaysia 22,850 25,471 11.5
Thaisarco Thailand 27,828 19,826 −28.8
Yunnan Chengfeng China 21,765 18,000 −17.8
Liuzhou China Tin China 13,499 13,193 −2.3
EM Vinto Bolivia 11,804 9,448 −20.0
Gold Bell Group China 4,696 8,000 70.9

Prices of tin were at US$11,900 per ton as of Nov 24, 2008. Prices reached an all-time high of nearly $25,000 per ton in May 2008, largely because of the effect of the decrease of tin production from Indonesia.

Exchanges

Applications

In 2006, about half of tin produced was used in solder. The rest was divided between tin plating, tin chemicals, brass and bronze, and niche uses.[53]

Solder

Tin has long been used as a solder in the form of an alloy with lead, tin accounting for 5 to 70% w/w. Tin forms a eutectic mixture with lead containing 63% tin and 37% lead. Such solders are primarily used for solders for joining pipes or electric circuits. Since the European Union Waste Electrical and Electronic Equipment Directive (WEEED) and Restriction of Hazardous Substances Directive (RoHS) came into effect on 1 July 2006, the use of lead in such alloys has decreased. Replacing lead has many problems, including a higher melting point, and the formation of tin whiskers causing electrical problems. Replacement alloys are rapidly being found, however.[54]

Tin plating

Tin bonds readily to iron and is used for coating lead or zinc and steel to prevent corrosion. Tin-plated steel containers are widely used for food preservation, and this forms a large part of the market for metallic tin. A tinplate canister for preserving food was first manufactured in London in 1812.[55] Speakers of British English call them "tins", while speakers of American English call them "cans" or "tin cans". One thus-derived use of the slang term "tinnie" or "tinny" means "can of beer". The tin whistle is so called because it was first mass-produced in tin-plated steel.[56][57]

Specialized alloys

Tin in combination with other elements forms a wide variety of useful alloys. Tin is most commonly alloyed with copper. Pewter is 85–99% tin;[58] Babbitt metal has a high percentage of tin as well.[59][60] Bronze is mostly copper (12% tin), while addition of phosphorus gives phosphor bronze. Bell metal is also a copper-tin alloy, containing 22% tin. Tin has also sometimes been used in coinage; for example, it once formed a single figure percentage of the American[61] and Canadian[62] pennies. Because copper is often the major metal in such coins, and zinc is sometimes present as well, these could technically be called bronze and/or brass alloys.

The niobium-tin compound Nb3Sn is commercially used as wires for superconducting magnets, due to the material's high critical temperature (18 K) and critical magnetic field (25 T). A superconducting magnet weighing only a couple of kilograms is capable of producing magnetic fields comparable to a conventional electromagnet weighing tons.[63]

A addition of a few percent tin is commonly used in zirconium alloys for the cladding of nuclear fuel.[64]

Most metal pipes in a pipe organ are made of varying amounts of a tin/lead alloy, with 50%/50% being the most common. The amount of tin in the pipe defines the pipe's tone, since tin is the most tonally resonant of all metals. When a tin/lead alloy cools, the lead cools slightly faster and produces a mottled or spotted effect. This metal alloy is referred to as spotted metal.[65][66]

Other applications

Punched tin, also called pierced tin, is an artisan technique originating in central Europe for creating housewares that are both functional and decorative. Decorative piercing designs exist in a wide variety, based on geography or the artisan's personal creations. Punched tin lanterns are the most common application of this artisan technique. The light of a candle shining through the pierced design creates a decorative light pattern in the room where it sits. Punched tin lanterns and other punched tin articles were created in the New World from the earliest European settlement. A well-known example is the Revere type lantern, named after Paul Revere.[67]

Before the modern era, in some areas of the Alps, a goat or sheep's horn would be sharpened and a tin panel would be punched out using the alphabet and numbers from one to nine. This learning tool was known appropriately as "the horn". Modern reproductions are decorated with such motifs as hearts and tulips.

In America, pie safes and food safes came into use in the days before refrigeration. These were wooden cupboards of various styles and sizes - either floor standing or hanging cupboards meant to discourage vermin and insects and to keep dust from perishable foodstuffs. These cabinets had tinplate inserts in the doors and sometimes in the sides, punched out by the homeowner, cabinetmaker or a tinsmith in varying designs to allow for air circulation. Modern reproductions of these articles remain popular in North America.[68]

Window glass is most often made by floating molten glass on top of molten tin (creating float glass) in order to produce a flat surface. This is called the "Pilkington process".[69]

Tin(II) fluoride is added to some dental care products[70][71] as stannous fluoride (SnF2). Tin(II) fluoride can be mixed with calcium abrasives while the more common sodium fluoride gradually becomes biologically inactive combined with calcium compounds.[72] It has also been shown to be more effective than sodium fluoride in controlling gingivitis.[73]

Organotin compounds

Of all the chemical compounds of tin, the organotin compounds are most heavily used. Worldwide industrial production probably exceeds 50,000 tonnes.[74]

PVC stabilizers

The major commercial application of organotin compounds is in the stabilization of PVC plastics. In the absence of such stabilizers, PVC would otherwise rapidly degrade under heat, light, and atmospheric oxygen, to give discolored, brittle products. Tin scavenges labile chloride ions (Cl-), which would otherwise initiate loss of HCl from the plastic material.[75] Typical tin compounds are carboxylic acid derivatives of dibutyltin dichloride, such as the dilaurate.[76]

Biocides

Organotin compounds can have a relatively high toxicity, which is both advantageous and problematic. They have been used for their biocidal effects in/as fungicides, pesticides, algaecides, wood preservatives, and antifouling agents.[75] Tributyltin oxide is used as a wood preservative.[77] Tributyltin was used as additive for ship paint to prevent growth of marine organisms on ships, with use declining after organotin compounds were recognized as persistent organic pollutants with an extremely high toxicity for some marine organisms, for example the dog whelk.[78] The EU banned the use of organotin compounds in 2003,[79] while concerns over the toxicity of these compounds to marine life and their effects on the reproduction and growth of some marine species,[75] (some reports describe biological effects to marine life at a concentration of 1 nanogram per liter) have led to a worldwide ban by the International Maritime Organization.[80] Many nations now restrict the use of organotin compounds to vessels over 25 meters long.[75]

Organic chemistry

Some tin reagents are useful in organic chemistry. In the largest application, stannous chloride is a common reducing agent for the conversion of nitro and oxime groups to amines. The Stille reaction couples organotin compounds with organic halides or pseudohalides.[81]

Precautions

Cases of poisoning from tin metal, its oxides, and its salts are "almost unknown". On the other hand certain organotin compounds are almost as toxic as cyanide.[30]

See also

Notes

  1. ^ Only H, F, P, Tl and Xe have a higher receptivity for NMR analysis for samples containing isotopes at their natural abundance.
  2. ^ Estimates vary between USGS and The British Geological Survey. The latter was chosen because it indicates that the most recent statistics are not estimates, and estimates match more closely with other estimates found for Congo-Kinshasa.

References

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ a b c d e Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils; (1985). "Tin" (in German). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 793–800. ISBN 3-11-007511-3. 
  3. ^ Ink with tin nanoparticles could print future circuit boards, Physorg, April 12, 2011; Jo, Yun Hwan; Jung, Inyu; Choi, Chung Seok; Kim, Inyoung; Lee, Hyuck Mo (2011). "Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink". Nanotechnology 22 (22): 225701. Bibcode 2011Nanot..22v5701J. doi:10.1088/0957-4484/22/22/225701. PMID 21454937. 
  4. ^ Molodets, A. M.; Nabatov, S. S. (2000). "Thermodynamic Potentials, Diagram of State, and Phase Transitions of Tin on Shock Compression". High Temperature 38 (5): 715–721. doi:10.1007/BF02755923. 
  5. ^ a b Schwartz, Mel (2002). "Tin and Alloys, Properties". Encyclopedia of Materials, Parts and Finishes (2nd ed.). CRC Press. ISBN 1-56676-661-3. 
  6. ^ This conversion is known as tin disease or tin pest. Tin pest was a particular problem in northern Europe in the 18th century as organ pipes made of tin alloy would sometimes be affected during long cold winters. Some sources also say that during Napoleon's Russian campaign of 1812, the temperatures became so cold that the tin buttons on the soldiers' uniforms disintegrated over time, contributing to the defeat of the Grande Armée.Le Coureur, Penny; Burreson, Jay (2004). Napoleon's Buttons: 17 Molecules that Changed History. New York: Penguin Group USA. 
  7. ^ Dehaas, W; Deboer, J; Vandenberg, G (1935). "The electrical resistance of cadmium, thallium and tin at low temperatures". Physica 2: 453. Bibcode 1935Phy.....2..453D. doi:10.1016/S0031-8914(35)90114-8. 
  8. ^ Meissner, W.; R. Ochsenfeld (1933). "Ein neuer effekt bei eintritt der supraleitfähigkeit". Naturwissenschaften 21 (44): 787–788. Bibcode 1933NW.....21..787M. doi:10.1007/BF01504252. 
  9. ^ Craig, Bruce D; Anderson, David S; International, A.S.M. (1995-01). Handbook of corrosion data. p. 126. ISBN 978-0-87170-518-1. http://books.google.de/books?id=KXwgAZJBWb0C&pg=RA1-PT126. 
  10. ^ "Interactive NMR Frequency Map". http://www.nyu.edu/cgi-bin/cgiwrap/aj39/NMRmap.cgi. Retrieved 2009-05-05. 
  11. ^ Walker, Phil (1994). "Doubly Magic Discovery of Tin-100". Physics World 7 (June). http://physicsworldarchive.iop.org/index.cfm?action=summary&doc=7%2F6%2Fphwv7i6a24%40pwa-xml&qt=. 
  12. ^ a b c Oxford English Dictionary, 2nd edition, 1989.
  13. ^ Encyclopædia Britannica, 11th Edition, 1911, s.v. 'tin', citing H. Kopp
  14. ^ "The Ancient Mining of Tin". http://www.oxleigh.freeserve.co.uk/pt77a.htm. Retrieved 2009-07-07. 
  15. ^ American Heritage Dictionary
  16. ^ Cierny, J.; Weisgerber, G. (2003). "The "Bronze Age tin mines in Central Asia". In Giumlia-Mair, A.; Lo Schiavo, F.. The Problem of Early Tin. Oxford: Archaeopress. pp. 23–31. ISBN 1-84171-564-6 
  17. ^ a b c d e Penhallurick, R.D. (1986). Tin in Antiquity: its Mining and Trade Throughout the Ancient World with Particular Reference to Cornwall. London: The Institute of Metals. ISBN 0-904357-81-3 
  18. ^ Charles, J.A. (1979). "The development of the usage of tin and tin-bronze: some problems". In Franklin, A.D.; Olin, J.S.; Wertime, T.A.. The Search for Ancient Tin. Washington D.C.: A seminar organized by Theodore A. Wertime and held at the Smithsonian Institution and the National Bureau of Standards, Washington D.C. March 14–15, 1977. pp. 25–32 
  19. ^ a b Gerrard, S. (2000). The Early British Tin Industry. Stroud: Tempus Publishing. ISBN 0-7524-1452-6 
  20. ^ Lo Schiavo, F. (2003). "The problem of early tin from the point of view of Nuragic Sardinia". In Giumlia-Mair, A.; Lo Schiavo, F.. The Problem of Early Tin. Oxford: Archaeopress. pp. 121–132. ISBN 1-84171-564-6 
  21. ^ Pulak, C. (2001). "The cargo of the Uluburun ship and evidence for trade with the Aegean and beyond". In Bonfante, L.; Karageogrhis, V.. Italy and Cyprus in Antiquity: 1500–450 BC. Nicosia: The Costakis and Leto Severis Foundation. pp. 12–61. ISBN 9963-8102-3-3 
  22. ^ Murowchick, R.E. (1991). The Ancient Bronze Metallurgy of Yunnan and its Environs: Development and Implications. Michigan: Ann Arbour 
  23. ^ Thoburn, John T. (1994). Tin in the World Economy. Edinburgh University Press. ISBN 0-7486-0516-9. 
  24. ^ a b Holleman, A. F.; Wiberg, E. (2001), Inorganic Chemistry, San Diego: Academic Press, ISBN 0-12-352651-5 
  25. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0080379419. 
  26. ^ Inorganic & Theoretical chemistry, F. Sherwood Taylor, Heineman, 6th Edition (1942)
  27. ^ J. M. Leger, J. Haines, A. Atouf (1996). "The high pressure behaviour of the cotunnite and post-cotunnite phases of PbCl2 and SnCl2". J. Phys. Chem. Solids 57 (1): 7–16. Bibcode 1996JPCS...57....7L. doi:10.1016/0022-3697(95)00060-7. 
  28. ^ Gaur, D. P.; Srivastava, G.; Mehrotra, R. C. (1973). "Organic Derivatives of Tin. III. Reactions of Trialkyltin Ethoxide with Alkanolamines". Zeitschrift f�r anorganische und allgemeine Chemie 398: 72. doi:10.1002/zaac.19733980109. 
  29. ^ Elschenbroich, C. "Organometallics" (2006) Wiley-VCH: Weinheim. ISBN 978-32939-0-6
  30. ^ a b c G. G. Graf "Tin, Tin Alloys, and Tin Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH, Weinheim doi:10.1002/14356007.a27_049
  31. ^ Sander H.L. Thoonen, Berth-Jan Deelman, Gerard van Koten (2004). "Synthetic aspects of tetraorganotins and organotin(IV) halides". Journal of Organometallic Chemistry (689): 2145–2157. http://igitur-archive.library.uu.nl/chem/2005-0622-182223/13093.pdf. 
  32. ^ Peng, Yang; Ellis, Bobby D.; Wang, Xinping; Fettinger, James C.; Power, P. P. (2009). "Reversible Reactions of Ethylene with Distannynes Under Ambient Conditions". Science 325 (5948): 1668–1670. Bibcode 2009Sci...325.1668P. doi:10.1126/science.1176443. PMID 19779193. 
  33. ^ Shu, Frank H (1982). The physical universe: An introduction to astronomy. pp. 119–121. ISBN 978-0-935702-05-7. http://books.google.de/books?id=v_6PbAfapSAC&pg=PA119. 
  34. ^ Emsley 2001, pp. 124, 231, 449 and 503
  35. ^ a b "Tin: From Ore to Ingot". International Tin Research Institute. 1991. http://www.itri.co.uk/pooled/articles/BF_TECHART/view.asp?Q=BF_TECHART_230527. Retrieved 2009-03-21. 
  36. ^ Sutphin, David M; Reed, David M. Sutphin Andrew E. Sabin Bruce L; Sabin, Andrew E; Reed, Bruce L (1992-06-01). Tin - International Strategic Minerals Inventory Summary Report. p. 9. ISBN 978-0-941375-62-7. http://books.google.de/books?id=NNlT5of3YikC&pg=PA10. 
  37. ^ a b c Carlin, Jr., James F.. "Minerals Yearbook 2006: Tin" (PDF). United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/tin/myb1-2006-tin.pdf. Retrieved 2008-11-23. 
  38. ^ Reilly, Michael (May 26, 2007). "How Long Will it Last?". New Scientist 194 (2605): 38–39. Bibcode 2007NewSc.194...38R. doi:10.1016/S0262-4079(07)61508-5. ISSN 4079 0262 4079. 
  39. ^ Brown, Lester (2006). Plan B 2.0. New York: W.W. Norton. p. 109. ISBN 978-0-393-32831-8. 
  40. ^ a b Carlin, Jr., James F.. "Mineral Commodity Summary 2008: Tin" (PDF). United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/tin/mcs-2008-tin.pdf. 
  41. ^ Kovalenko, V. I.; Yarmolyuk, V. V. (1995). "Endogenous rare metal ore formations and rare metal metallogeny of Mongolia". Economic Geology 90 (3): 520. doi:10.2113/gsecongeo.90.3.520. http://econgeol.geoscienceworld.org/cgi/content/abstract/90/3/520. 
  42. ^ "Seminole Group Colombia Discovers High Grade Tin Ore in the Amazon Jungle". 1888 PressRelease. http://www.1888pressrelease.com/seminole-group-colombia-discovers-high-grade-tin-ore-in-the-pr-100235.html. Retrieved 2009-07-28. 
  43. ^ "Seminole Enterprises Group Discovers High Grade Tin Ore In The Amazons Of Colombia". PRLog Free Press Release. http://www.prlog.org/10175604-seminole-enterprises-group-discovers-high-grade-tin-ore-in-the-amazons-of-colombia.html. Retrieved 2009-07-28. 
  44. ^ Schrader, George F; Elshennawy, Ahmad K; Doyle, Lawrence E (2000-07). Manufacturing processes and materials. ISBN 978-0-87263-517-3. http://books.google.de/books?id=Nz2wXvmkAF0C&pg=PT89. 
  45. ^ Louis, Henry (1911). Metallurgy of tin. http://books.google.de/books?id=5qogAAAAMAAJ. 
  46. ^ Control, Tin Under. Tin Under Control. ISBN 978-0-8047-2136-3. http://books.google.de/books?id=IpuaAAAAIAAJ&pg=PA58. 
  47. ^ Shiyu, Yang (1991). "Classification and type association of tin deposits in Southeast Yunnan Tin Belt". Chinese Journal of Geochemistry 10 (1): 21–35. doi:10.1007/BF02843295. 
  48. ^ World Mineral Production 2002–06. British Geological Survey. p. 89. http://nora.nerc.ac.uk/3260/2/FINAL_WMP_2002_2006_COMPLETE_WEB.pdf. Retrieved 2009-07-07. 
  49. ^ Polgreen, Lydia (November 15, 2008). "The Spoils: Congo's Riches, Looted by Renegade Troops". New York Times. http://www.nytimes.com/2008/11/16/world/africa/16congo.html?ref=africa. Retrieved 2010-05-25. 
  50. ^ "International Tin Research Institute. LME Tin Brands". http://www.itri.co.uk/pooled/articles/BF_TECHART/view.asp?Q=BF_TECHART_303032. Retrieved 2009-05-05. 
  51. ^ "International Tin Research Institute. Top Ten Tin Producing Companies". http://www.itri.co.uk/pooled/articles/BF_TECHART/view.asp?Q=BF_TECHART_285697. Retrieved 2009-05-05. 
  52. ^ "12 Januari Pemasaran Perdana INATIN". December 15, 2011. http://bangka.tribunnews.com/2011/12/15/12-januari-pemasaran-perdana-inatin. 
  53. ^ "ITRI. Tin Use Survey 2007". ITRI. http://www.itri.co.uk/pooled/articles/BF_TECHART/view.asp?Q=BF_TECHART_297350. Retrieved 2008-11-21. 
  54. ^ Black, Harvey (2005). "Getting the Lead Out of Electronics". Environmental Health Perspectives 113 (10): A682–5. doi:10.1289/ehp.113-a682. PMC 1281311. PMID 16203230. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1281311. 
  55. ^ Education in chemistry 32: 92–. http://books.google.com/books?ei=bHaHTs_QOszFtAaA_d3gAQ&ct. 
  56. ^ Control, Tin Under. Tin Under Control. pp. 10–15. ISBN 978-0-8047-2136-3. http://books.google.de/books?id=IpuaAAAAIAAJ&pg=PA13. 
  57. ^ Panel On Tin, National Research Council (U.S.). Committee on Technical Aspects of Critical and Strategic Materials (1970). Trends in the use of tin. pp. 10–22. http://books.google.de/books?id=qz8rAAAAYAAJ&pg=PA10. 
  58. ^ Hull, Charles (1992). Pewter. Osprey Publishing. pp. 1–5. ISBN 978-0-7478-0152-8. http://books.google.com/?id=3_zyycVRw18C. 
  59. ^ Brakes, James (2009). "Introduction". Analysis of Babbit. BiblioBazaar, LLC. pp. 1–2. ISBN 978-1-110-11092-6. http://books.google.com/?id=hZ3zGS6by9UC&printsec=frontcover. 
  60. ^ Williams, Robert S. (2007). Principles of Metallography. Read books. pp. 46–47. ISBN 978-1-4067-4671-6. http://books.google.com/?id=KR82QRlAgUwC&pg=PA46. 
  61. ^ "The Composition of the Cent". US Mint. http://www.usmint.gov/about_the_mint/fun_facts/?action=fun_facts2. Retrieved 2011-10-28. 
  62. ^ "COMPOSITION OF CANADIAN COINS". Canadian Mint. http://www.bcscta.ca/resources/hebden/chem/Coin%20Compositions.pdf. Retrieved 2011-10-28. 
  63. ^ Geballe, Theodore H. (October 1993). "Superconductivity: From Physics to Technology". Physics Today 46 (10): pp. 52–56. doi:10.1063/1.881384. 
  64. ^ "Zirconium". p. 597. http://books.google.de/books?id=6VdROgeQ5M8C&pg=PA597. 
  65. ^ Robert Palmieri, ed (2006). "Pipe Metal". Encyclopedia of keyboard instruments. New York: Garland. p. 411. ISBN 978-0-415-94174-7. http://books.google.com/?id=cgDJaeFFUPoC&pg=PT426. 
  66. ^ By George Ashdown Audsley (1988). "Metal Pipes: And the Materials used in their Construction". The Art of Organ Building Audsley, George Ashdown. Courier Dover Publications. p. 501. ISBN 978-0-486-21315-6. http://books.google.com/?id=I0h525OVoTgC&pg=PA501. 
  67. ^ Bridge, Janet (1996-09). Making & decorating picture frames. ISBN 9780891347392. http://books.google.de/books?id=nBFmcBMNp4kC. 
  68. ^ "Tin punching". http://www.piercedtin.com/about-us.htm. Retrieved August 15, 2011. 
  69. ^ Pilkington, L. A. B. (1969). "Review Lecture. The Float Glass Process". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 314 (1516): 1–25. Bibcode 1969RSPSA.314....1P. doi:10.1098/rspa.1969.0212. JSTOR 2416528. 
  70. ^ "Crest Pro Health". http://www.crest.com/prohealth/home.jsp. Retrieved 2009-05-05. 
  71. ^ "Colgate Gel-Kam". http://www.colgate.com/app/Colgate/US/OC/Products/FromTheDentist/GelKamStannousFluorideGel.cvsp. Retrieved 2009-05-05. 
  72. ^ Hattab, F. (April 1989). "The State of Fluorides in Toothpastes". Journal of Dentistry 17 (2): 47–54. doi:10.1016/0300-5712(89)90129-2. PMID 2732364. 
  73. ^ Perlich, MA; Bacca, LA; Bollmer, BW; Lanzalaco, AC; McClanahan, SF; Sewak, LK; Beiswanger, BB; Eichold, WA et al. (1995). "The clinical effect of a stabilized stannous fluoride dentifrice on plaque formation, gingivitis and gingival bleeding: a six-month study". The Journal of Clinical Dentistry 6 (Special Issue): 54–58. PMID 8593194. 
  74. ^ Ebdon, L; Britain), Royal Society of Chemistry (Great (2001). "Organotin in Industrial and Domestic Products". Trace element speciation for environment, food and health. p. 144. ISBN 9780854044597. http://books.google.com/books?id=lAm5e1YVnm4C&pg=PA144. 
  75. ^ a b c d Atkins, Peter; Shriver, Duward F.; Overton, Tina and Rourke, Jonathan (2006). Inorganic chemistry (4 ed.). W.H. Freeman. pp. 343; 345. ISBN 0-7167-4878-9. 
  76. ^ Wilkes, Charles E; Summers, James W; Daniels, Charles Anthony; Berard, Mark T (2005-08). PVC handbook. p. 108. ISBN 9781569903797. http://books.google.com/books?id=YUkJNI9QYsUC&pg=PA108. 
  77. ^ ed. by David N.-S. Hon; Nobuo Shiraishi. (2001). "Preservation of Wood". Wood and cellulosic chemistry. New York, NY: Dekker. p. 799. ISBN 978-0-8247-0024-9. http://books.google.com/?id=pKiTzbEDy1QC&pg=PA799. 
  78. ^ Eisler, Ronald. "Tin Hazards To Fish, Wildlife, and Invertebrates: A Synoptic Review" (PDF). U.S. Fish and Wildlife Service Patuxent Wildlife Research Center. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA322822&Location=U2&doc=GetTRDoc.pdf. 
  79. ^ "Regulation (EC) No 782/2003 of the European Parlament and of the Council of 14 April 2003 on the prohibition of organotin compounds on ships". http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:115:0001:0011:EN:PDF. Retrieved 2009-05-05. 
  80. ^ edited by Simone Dürr and Jeremy Thomason. (2008). "Fouling on Shipping". Biofouling. Oxford: Blackwell. p. 227. ISBN 978-1-4051-6926-4. http://books.google.com/?id=pERX3gKmFy4C&pg=PT227. 
  81. ^ Farina, Vittorio; Krishnamurthy, Venkat; Scott, William J. (1997). "The Stille Reaction". Organic Reactions (New York: Wiley). doi:10.1002/0471264180.or050.01. ISBN 0-471-31273-8. 

Bibliography

External links